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INFLUENCE OF THE HALL EFFECT ON THE CHARACTERISTICS OF A MHD

GENERATOR WITH TWO PAIRS OF ELECTRODES

E. K. Kholshchevnikova

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 4, pp. 74-84, 1966

The characteristics of segmented -electrode MHD generators
with Hall currents are at present the object of considerable interest.
Various types of electiode connections are being examined: ordinary
segmented-electrode generators, Hall generators, mixed-type gen-
erators, and Montardy generators, Research is being pushed in several

directions. In some cases infinitely fine segmentation is assumed [1—4] .
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In these studies it is considered that the current density j in the duct

is everywhere uniform; the net characteristics or the most favorable
electrode connection angle are determined. In another group of studies
periodic problems are solved, it being assumed that the processes
taking place in a single elementary cell are repeated in the other
cells; fringe effects are not taken into account. In this case it is
usually assumed that the lengths of the electrodes and insulators are
finite, but small as compared with the duct height [5—~7]. Finally, in
a last group of studies nonperiodic problems are considered, In [3)]
Vatazhin solves the problem of the current distribution in a duct with
a single pair of electrodes between infinitely long insulators. In [8]

a general expression is found for the current density function in the
case of an arbitrary number of electrode pairs and for any scheme of
electrode connection at finite electrode and insulator dimensions,
However, numerical calculations are made only for the periodic prob-
lem, whose solution is also obtained in [8]; the effect of segment
pitch on the characteristics of a Montardy generator is studied.,

The present author has investigated the influence of the Hall effect
on the characteristics of a MHD generator having two pairs of elec-
trodes with symmetrical and crossed electrode connections, Although
it is obvious that in practice only multisegment ducts will be employed,
the examination of a generator with two pairs of electrodes makes
possible the qualitative analysis of the various effects observed in
segmented-electrode ducts in which the electrodes are connected in
different ways. Numerical calculations, based on formulas obtained
by solving the corresponding problems, have been made on a M-20
computer, Integrated characteristics of the various generator systems
have been obtained as a function of electrode and insulator length,
external loads, and Hall parameter w,

§1. We shall find the solution of the problem of the
current distribution in the plane duct of a MHD genera-
tor with two pairs of electrodes for the following two
cases of electrode connection: a) each pair of sym-
metrically arranged electrodes is connected across
its own external load (Fig. la); b) the upper electrode
of each pair is connected across the external load with
the lower electrode of the adjacent pair (Fig. 1b). For
convenience, we shall call the problem of the current
distribution in a duct with electrical connection a)
problem A, and the problem of the current distribution
in a duct with electrical connection b) problem B. In
both cases the electrodes of one pair KN and PQ are
separated from the electrodes of the other pair ML and
BC by insulators NM and QB. At the inlet and outlet of
the duct the electrodes are bounded by infinitely long
insulators. In the domain of the complex variable x =
=x + iy the coordinates of the initial and end points of
the electrodes are equal to

K(—h—1+18), N(—h+ i),
MO+ i8), L+ 140
Ch+1, BMA, Q(=n, P(—hi—1.

Here I is the length of the electrode, 2A the length
of the insulator, and 6 the height of the duct. We denote
the currents flowing through the loads ry and ry by I;
and I,
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Fig. 2

We solve problems A and B under the following
assumptions: the cross-sectional area of the duct, the
scalar conductivity of the working medium o, the mag-
netic field B = (0,0, — B)perpendiculartothedirection
of motion, and the Hall parameter wr are constant;
WiTi € weTe, i.e., the ion slip effect can be disre-
garded; the magnetic Reynolds number is small Ry, <
« 1, and the induced magnetic field can be neglected;
the flow is plane and steady; the velocity of the medium
is a known (for example, from the solution in the first
approximation of the equations of gas dynamics) func-
tion of the coordinates V = V(x,y); the dimension of
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the duct in the direction of the magnetic field is taken
equal to unity.

With these assumptions the current density j and
the potential ¢ are determined from the system of
equations:

generalized Ohm's law

j=o(—ve+1VxB)—%jxB, (1)
current continuity equation
divj=0. (1.2)

In [9] it was shown that if the magnetic field is uni-
form (B = B, > 0) and the velocity components can be
written in the form

Ve=0¢/dy,

V, = —op/ iz, (1.3)

then it is possible to introduce the analytic function

W(z) = j, (8) + iy (2). (1.4)

Representation (1.3) is always possible for an in-
compressible fluid with p = const (then ¢ is the stream
function) and for rectilinear flow at arbitrary velocity
V = V(y) in a duct of constant cross section. In this
case

Y
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Let representation (1.3) be possible in our case. We
conformally map the strip z onto the half-plane t with
the aid of the transformation

t =1 + ip — en(A+1+2)/8 .
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Fig. 3

In this case the function W(z) goes over into the
function F(t), and the duct boundary in the z domain
goes over into the real axis in the t plane. Transforma-
tion (1.5) is illustrated in Fig. 1c. For the parameters
k, p, and r, in terms of which the coordinates of the
end points of the electrodes in the t plane are deter-
mined, we obtain from (1.5) the relations

— —27A
k = ¢ ni/ﬁ, 2m /57

qg=e p:kg, r:kp=k2q(1.6)

The boundary conditions corresponding to the elec-
trode connections considered have the form

b9 _ P i KN, ML, BC, P 1.7
0x_0, Jx = @Tfy, (KN, ML, BC,PQ), (1.7)

j,=0 (— o0 K, NM, Loo, ocC, BQ, — Poo),

(1.7)
Jx=17,=0 (F(5)=0) (z=+1 o), (cont'd)
Iiri= ¢ —¢p 7 WMI'M.. (t O)ﬁadt‘
Lory = (py — Pp, e —51 Tt o -
Iik a
=\ i 0 grdr (), 1.8)
1

Lk s
Il = 3 jy (Tv 0) Frz-d’l,’ =

-1

Iy = Qg — pp,
Iry = @y —@p,
1/'r
=\ (5 0) S dr. (5).

1/p

(1.9)
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Here the potentials on electrodes KN, ML, BC, PQ,
which are assumed to be ideal conductors, have been
denoted respectively by ¢i, ¢M, ¢B, and @p. For
the t region boundary conditions (1.7) can be written
in the form

a (W) Jy (1) + b (1) j= (1) = (1), (1.10)

where a(7), b(7) and c(7) are given functions of 7.

The problem of finding a function (1.4) analytic in
the upper half-plane and satisfying boundary condition
(1.10) is a Riemann-Hilbert boundary value problem.
The general form of the solution of this problem for
an arbitrary number of electrode pairs and an arbi-
trary electrode connection scheme was obtained in [8].
For our specific case (duct with two pairs of electrodes)
the function F(t), obtained from the general solution,
is equal to

F ) =iy () + i () = § (t— L™ (1 — My}
X (t — Ny) ™"t — K1)
X (t _— Pl)—v/n-l (If . Ql)v/n (t . Bl)_‘,/ﬂ__lx

X (t— C1)"" t (s -+ Rat + Rgt?)

1

(v:—arctg(air—\/, —-—2—<—:-[—<0>. (1.11)

The constants Ry, Ry, and Rsin (1.11) are deter~
mined for problem A from conditions (1.8), and for
problem B from conditions (1.9). The ends of the elec-
trodes in the t plane are denoted by the letters L,

My, ..., C; (Fig. 1c). In using Eq, (1.11) these let-
ters must be replaced with the coordinates of the cor-
responding points in the t plane.
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After rather laborious transformations it is possible

to obtain the following equations for the integrated
generator characteristics:
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Here r° is the dimensionless load, I° the dimension~
less current, N° the dimensionless power, 7 the ef-
ficiency, E the generator emf, Q the Joule dissipation,
Q the volume flowrate:

E— B

Q = const, 7°=or,
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The coefficients. a, b, ¢, d, e and g for problems A and B are
different and constitute sets of definite integrals, which are obtained
in writing the function F(r) (1.11) on different sections of the duct
boundary in the t plane. These definite integrals, and hence the
coefficients a, b, ¢, d, e and g, depend on the parameters k, 4, p,
rand v, i.e., on the geometrical dimensions of the duct 7/§ and \/§
and the Hall parameter wr. Altogether, there are 21 such integrals.
In order to investigate the effect of the exteinal loads, the relative
dimensions of the electrodes and insulators, and the Hall parameter
on the generator characteristics, it is necessary to compute the values
of these integrals at different values of the parameters /5, A/$ and
wr. The evaluation of the integrals is the most complicated part of
the problem. This is because it is necessary to evaluate a large number
of integrals, whose integrands are represented by quite clumsy expres-
sions, while the capacity of the computer memory is relatively small.
Moreover, the integrand functions have singularities at the upper and
lower limits of integration, as a result of which the computation
process is attended by a number of difficulties, which, however, it has
proved possible to overcome. The method of evaluating the integrals
is explained in detail in § 2 below.

§2. All the integrals entering into the solution can be reduced to
integrals whose lower limit of integration is equal to zero, while the
upper limit is equal to unity:

. 1
Ji:S/i (@) dz
1]

G=1,..,21), (2.1)

The functions f(x) go to infinity at the upper and lower limits of
integration, By way of example, we write out one of them:

fiz) = {x_ Tl—mr k)S[(—:—E;- —px) X

2k 2R 211
(1T—Il)c+'1’”ﬂ" x

N[(= SR ILETRIEELIE)

We find the integrals (2.1) by integrating the system of ordinary
equations

fz?a/: =fi(®) (yi (x) = § fi(9) dt> (2.2)

]

satisfying the boundary conditions yj(x = 0) = 0, up to the value x = 1,
In order to get rid of the singularities in the right sides of the dif-
ferential equations, we make the change of variables

ds = (2 fi2 (@) + 1)‘/2 dz . 2.3)
7
Substituting for fi(x)in (2.3), after transformations we obtain
dx 17 L4 241
el L P 4

Here L is a complex function of x and the parameters k, d, p, r
and v, without singularities on the interval [0, 1]. Substituting (2.4)
in (2.2), we have

dy; 4

ds L
Let s(x = 0) = 0, In the integration of system of equations (2.4),
(2.5), equivalent to (2.2), the independent variable s takes values

ranging from s = 0 to s = §*, the value at which x becomes equal to 1.
The boundary conditions take the form

@ et T =t @8

yi(s =10) =0, Yils = s*) =J; . (2.6)

If we integrate system (2.4), (2.5) by the Runge-Kutta method, it
is impossible to get away from the initial point x¢= 0 by giving an
increment to the argument s, since (dx/ds) y=x, = 0. Therefore we
reduce Eq. (2.4) to the form

dyzs 1 v L4
ds ='L_[—?(’—“)n ]

Thus, it is necessary to integrate system of differential equations
(2.8), (2.7) satisfying boundary conditions (2.6). The right sides of
system (2,5), (2.7) are free of singularities over the entire interval of
integration; therefore the system can be numerically integrated on an
electronic computer using known standard programs.

We note that after replacement of the variable of integration x by
the variable s the right sides of certain equations of system (2.5), (2.7)
were found to depend on cofactors of the type (1 — x)* (0 = o < 1),
while the right sidesof the other equations were found to be independent
of these cofactors, Consequently, toward the end of the interval of
integration, as x —> 1, the derivatives of certain functions with respect
to s tend to zero (we will call these functions of the first group); the
derivatives of the other functions (we shall call these functions functions
of the second group) tend to finite nonzero values as x = 1., From the
results of preliminary calculations of the system (2.5), (2.7)on a
M-20 computer by the Runge-Kutta method we constructed graphs of

e =27, (@)

‘ x(s) and ys 4 (s) for two cases (Fig. 2). Curves 1 correspond to values of

the parameters [/6= 04, V6= 0,01, wr=5(x= y;-.f'g); curves 2
correspond to values of the parameters 1/5= Mé=1, wr=10(x =

= yzalz's) g = 1078, It is clear from (2.7) and Fig. 2 that x(s) and y, 5 (8)
are functions of the first group. Since the values s* at which it is
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necessary to terminate the calculation are different for different values
of the parameters I/, A /8 and wr and are not known in advance,
system (2.5), (2.7) was calculated with automatic selection of the
interval and standard estimation of the relative error, After each step
the computed value of x was compared with unity; the calculation was
stopped when the condition {1 — x| < |g,] was satisfied, where &; is
the given error. It is clear from the above that a small deviation of
the final value of x from unity may lead to a considerable error in
determining the final value of s. We shall denote this error by As*,
The errors in the functions y; associated with inaccurate determination
of s* can be determined from the equation

dy;
Ay; = ( d; >S' As*,

Hence it is clear that the errors of the functions of the first group
are close to zero, while the errors of the functions of the second group
are finite and proportional to As*. Preliminary calculations showed
that for the minimum permissible value of &, for the M-20 computer
the errors of functions of the second group are intolerably large.

Moreover, as a result of preliminary calculations it was found that
automatic step selection in calculating the system (2.5), (2.7) with the
maximum possible accuracy for the M-20 does not always ensure a
given accuracy (to the fifth place) of determination of the functions
yi. This may be explained as follows: it is clear from Fig. 2 that the
functions y,, varies quite uniformly with respect to s; on the other
hand, the function x(s) is highly nonuniform: on a large part of the
interval of integration x varies extremely little, but then increases
rapidly to unity. In this case the relation x(s) is the more nonuniform
and differs the more sharply from the nature of the relation y;;(s),
the greater wr (see (2.7)).

In view of the fact that for the selection of a new step the calcula-
tion error is estimated only for the functions y; (i= 1, ..., 22) entering
into system (2.5), (2.7), automatic step selection is not accompanied
by refinement of the step in the region of rapid variation of x. This
means that in a number of cases the relation x(s), and hence the
functions yj, are inaccurately determined. Therefore it is necessary
to introduce artificial refinement of the integration step to correspond
with the nature of the x(s) curve.

For a more accurate determination of the functions yj it is possible
to carry out the calculation in the following order, From the x(s) curve
constructed as a result of a preliminary calculation of the least favor~
able case, corresponding to maximum values' of the parameters /8,
N6, and wr, we find a series of reference points, in passing through
which the step must be refined, It should be kept in mind that for
different values of /5, A/§, and wr the value of s, near which x
begins to increase sharply, is different and is displaced in the direction
of large s with increase in wr; at small wr there may be no interval
of rapid variation of x at all.

Accordingly, we selected three reference values of x, with which
we compared the values of x computed in each integration step. As
before, the calculation was conducted in accordance with the Runge-
Kutta method. The step h was determined as follows; h is selected
automatically at x < 0,0001

ho=002 s (0.0001 < z < 0.4),
h=0001 s (04 < z < 0.7),
ko= 0.0002 s (0.7 <z < 1.0). (2.8)

Here s, is the value of the argument at which the value of x first
exceeded 0.0001. The calculation was stopped when the condition
|1 = x| < |gy] was satisfied, The functions of the first group yj(s*)
were taken equal to the values of the unknown integrals Jj. In order

An estimate of the values of the integrals at different values of
1/6, and A/ 6 showed that at 1/§ > 1 or /& > 1 overflow is possible;
therefore (1/8)max = (W 8)max = 1. When wr > 10, the ion slip
effect beomces appreciable; therefore wrpy ¢ = 10.

to eliminate the error in calculating the functions of the second group
at the end of the integration interval the following method was employed.
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The values of x computed in each step were compared with a certain
value x* close to unity, Preliminary calculations showed that the
given calculation accuracy is achieved when x* lies in the interval
0,999 = x* = 0.9999. When the condition |x* — x| < [e, ], where &, is
the given error, was satisfied, the values of the functions yj(x) were
stored in a certain block of cells. Upon completion of the calculation
of system (2.5), (2.7) Simpson’s method was used to find the value of
one of the integrals of the second group, for example, J;. From this
value the values of the other integrals of the second group were cor-
rected, The integral J; can be represented as the sum of two integrals

1 x* 1
n={n@a={nea+ (h@a—ne+r
0 0 x*

The integral Yy was computed from a standard program by Simpson's
method.

We divide the differential equations of system (2.5), (2.7) by the
first equation

dy; .
dy;:p”‘(z) (i=1,...,20).

Here pi(x) is the ratio of the right side of the i-th equation to the
right side of the first equation, Preliminary calculations showed that
the functions p;(x) vary little at values of x close to unity. Therefore
they can be replaced by the mean value

(> = 0.5 [pg (@) + pa (D).

Then for the increments of the functions y; on the interval {x*, 1]
we obtain

Ay; = ) Ayn = (pap Vi,

and the values of the unknown integrals of the second group will be
equal to

Ji =y (%) + Ay,

Preliminary calculations showed that the calculation method
described makes it possible to obtain values of the integrals J; with
given accuracy (to the fifth place). However, refinement of the step
in the sequence (2.8) leads to a considerable increase in the time
required to compute the variants (one variant corresponds to the
assigment of values of the three parameters 1/6, M6 and wr), in
which the function x(s) is sufficiently uniform.

Thus, in computing with automatic step selection one such variant
is computed in 1-3 min, while in computing with progressive refine-
ment of the step the time required is 15-30 min. Therefore, it is
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desirable to perform the calculation of all variants by the method
described with automatic step selection at two different values of s*,
for example, x* = 0.5 and x* = 0,999, In this case at x* = 0.5 the
integrals of the second group will be incorrectly evaluated, while at
any x* the integrals of the first group are evaluated in essentially the
same way; the only difference is that for storing values of yi(x*) at
different x* the step will be refined close to different values of s
corresponding to the given x*.
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If automatic step selection ensures the given accuracy, then the
first four places of the integrals of the first group, evaluated -at.two
different values of x*, will coincide, In this case the results of the
computation at x* = 0,999 will be correct. If the first four places of
the integrals of the first group do not coincide, it will be necessary to
recalculate these variants using a program with step refinement in the
sequence (2.8),

In this way we calculated the integrated characteristics of MHD
generators corresponding to schemes A and B for the following values
of the parameters1; = 0, 1, 2, 5, 10, 20;15 = 0.1, 2, 5, 10, 20;
wr=0,1,3,5,7, 10; /6= 0.05, 0.1, 0.2, 0.4, 0.7, 1; Mé=
=0.01, 0,03, 0.05, 0.1, 0.3, 0.7, 1, The accuracy of determination
of the characteristics lies in the range 1-5%.

§3. We will now analyze the results of the calcula-
tion. First, we will consider the influence of the Hall
effect on the characteristics of generators A and B in
the case of equal external loads r§ = r$ = r°. Calcula-
tions for equal external loads r° = 5 were made for
problems A and B at different values of the param-
eters 1 /6, A/6 and wr. The currents I and I3, and
hence the potential differences between the electrodes
connected by loads r§ and r3, for problem A were
found to be equal in all cases when wT was varied from
0 to 10. The corresponding currents and potential
differences for problem B were found to be essentially
unequal, the values of I and A¢$ = Ir$ (¢° = ¢/E is
the dimensionless potential) being always greater than
I and Agj = I5rs.

In order to elucidate the results obtained, we calcu-
lated the values of the electric potentials on the elec-
trodes for several cases, where the values of the
constants R;, Ry, and Rscomputed on the M-20 were
known. In this case we assumed that the potential of
one of the electrodes was equal to zero (¢p°=10). In
MHD generators the direction of the Hall current coin-
cides with the direction of motion of the working med-
ium, i.e., with the direction of the vector V. In the
case in question the Hall current flows from left to
right. The calculations of the electrode potentials

showed that at wr = 0 and any values of the parameters
1/6 and A/6 the potentials on the electrodes of the
right-hand pair are greater than the potentials on the
electrodes of the left-hand pair, i.e., the Hall effect
in MHD generators with segmented electrodes leads
to an increase in the electric potential along the duct
in the direction of motion of the working medium. The
longitudinal growth of potential takes place in such a
way that the potential differences between opposite
electrodes remain constant. As wT increases, the
growth of potential along the length of the ductincreases.
Thus, for example, when I /6 =A/6 = 0.1 for prob-
lem A we have ¢°g — ¢° = 0.111 at wr =1 and ¢} —
— ¢p = 0.585 at w7 = 10; for problem B we have ¢°g —
- ¢p =0.0775 at wr = 1‘and 9B~ ¢p = 0.138 at wr =
= 10. We note that in problem A the longitudinal growth
of potential is much more intense than in problem B.

The phenomena described can be explained as follows. In MHD
generators at wr # 0 there appears a Hall emf E* which canses the
positive charges to move in the direction of the vector V. Consequently,
there is an increase in the electric potential along the length of the
duct in the case of segmented electrodes. When the electrodes are
connected in accordance with scheme A, positive particles, migrating
from the region of the left-hand pair of electrodes into the region of
the right-hand pair under the influence of the Hall emf E*, cannot
return to the left-hand pair. Therefore, in this scheme the potential
of the right-hand pair increases until the electric forces due to the
longitudinal potential difference balance the action of the Hall forces.
Thus, in the steady-state regime the longitudinal potential difference
is equal to E*, and there are no currents flowing from one pair of
electrodes to the other. In this case I = I, since the potentials of the
upper and lower electrodes of the right-hand pair increase by the same
amount, '

In scheme B the reason for the increase in the potential difference
Agjy and hence in the current I3, and the decrease in the potential
difference Agj and current Iy, is the increase in the potential of the
upper electrode of the pair connected by the load r; and the increase
in the potential of the lower electrode of the pair connected by the
load 1j. Since in scheme B,I; > I, L can be written in the form of
a sum:

I° = I° 4 I°, (3.1)

where I is the current that flows along the diagonal from electrode PQ
to electrode ML. We shall make the conventional assumption that a
current source, whose emf is equal to the Hall emf E*, is located
between the two pairs of electrodes. It is known that the maximum
potential difference is produced at the terminals of the cuirent source
when no current flows, Therefore in scheme A, where I3 = 0, the
potential difference in the longitudinal direction will be much greater
than in scheme B.

We will consider the influence of the external loads
and the parameters [ /6, A/6 and wt on the integrated
characteristics of MHD generators corresponding to
schemes A and B. Calculations showed that, as when
w7 =0, in the presence of a Hall effect the power has
a maximum with respect to both external loads, i.e.,

- there are optimal loads r{,,: and r} opts at which N® =

= N°pax- The variation of the efficiency 1 as a func-
tion of r{ and r$ is also analogous to the case wr =0,
which was examined in detail in [10]. With increase

in both loads 7 increases and tends to unity as r{ —

— o and r$ — «, since in this case the currents and
hence the Joule losses tend to zero.
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In scheme A the optimal loads with respect to power are equal
Hopt = Iy opt = r'opt and increase with increase in wr (Toopt ~ 2 at
wr = 0and r’gpp = 10 at wr = 10). Since in this scheme I = I at
17 = 15, the current flowing through each load can be written in the
form I = E/(r + ry), where E is the generator emf, and 1; the internal
resistance, It is known from electrical engineering that in such a
simple circuit the maximum power is released in the external load
when r = 1. With increase in wr the internal resistance increases due
to the increase in the length of the flow lines; therefore the value of
the optimal extemal load also increases.

In scheme B the optimal loads are essentially unequal: r;opt <
<13 opt. With increase in wT riopt varies only very slightly: fjopr =~
~ 2-0 with variation of wr from 0 to 10, while rZopt increases from 2
at wT = 0 to 20 at wr = 10; we note that in the great majority of cases
riopt # 0. In order to elucidate these results, we will consider the ef-
fect of the parameter wT on the currents I3 and I; (Fig. 3). In the graph
the continuous lines correspond to the current I3, the broken lines to
the current I3; the numeral 1 denotes curves relaring to the case 1} =
=1z = 2, numeral 2 denotes curves relating to the case 11 = 1, 15 = 5;
1/8 = 0.2, A/& = 0.1. It is clear from the graph that when 1] =13 the
current 13 always decreases, while the current 1, first increases, and
then decreases with increase in wr. At large wt the current 15 is al-
ways greater than Ii. The calculations showed that when ri > 13 both
currents Ii and IE decrease with increase in wr, but the current I; is al-
ways the greater. This variation of the currents as a function of wr is
associated with the following effects: 1) when 1] = 13 there exist elec-
tric forces that cause current to flow in the direction of the smaller re-
sistance; 2) with increase in wT the internal rj increases, as a result of
which the currents Iz and I decrease; 3) with increase in wr the Hall
emf E* increases, which increases the current I; and decreases the cur-
rent 13,

Since N° depends on the products of the squares of the currents and
the loads, and I; > I at large wr, it is clear that N°p,x will be
attained when the larger current is multiplied by the larger load.

In Fig. 4 the powers N°, . of generators A and B
are shown as a function of wr at different values of
1/6 and A/6 = 0.1 for loads riopt and rYpts Optimal
for the given A/6 and each value of 1/6 and wt. Clearly,
N°hax decreases sharply with increase in wr. Thus,
for example, when [/ =1 an increase in wt from 0 to
10 leads to a decrease in N° . by 92%. It is clear
that this decrease in power is associated with an in-
crease in ry as wr increases. We note that at large
wT the curves corresponding to different I/6 approach
each other, i.e., the influence of the parameter 1/6
decreases with increase in wr. Moreover, the param-
eter wr has less effect on the characteristics of gene-
rators with small 1/5; the power of generators with
small 1/5 decreases less strongly with increase in wt
than the power of generators with large /5.

The efficiency of generators of type A and B with
ri=r%or r{ > r$ varies as a function of wr inthe same
way as N°yax. When rf < r%the efficiency 7 in scheme
B may have a maximum with respect to wr. The cor-
responding curves are presented in Fig. 5. Along the
ordinate axis we have plotted the quantity 7* = /7y 1=
The curves have been constructed for two cases: r =
=1, r%= 20 (continuous lines), and r{ =1, r$ =25
{broken lines); A/6 = 0.1. The values of N° and nalways
increase with increase in [/5 owing to the decrease in
internal resistance. However the negative influence
of wr is less strongly expressed in relation to the
characteristics of generators with smaller 1/8; there-
fore the 7* curves for smaller /8 occupy a higher

position in Fig. 5. The variation of the n*vs. wrcurves
can easily be explained if one knows the nature of the
variation of the currents I and IS as a function of wr
for cases of unequal loads r{ and r%.

We will consider the influence of the parameter
A/& on the characteristics of generators A and B. At
equal loads the characteristics of generator A always
improve with increase A/8, since at large A/8 current
begins to leak into the zone outside the electrodes,
which leads to a decrease in internal resistance. When
the loads are unequal, the parameter /3 affects the
characteristics of generator A in the same way as
when wrt = 0, as a result of which in this scheme the
Hall effect does not produce an increase in the current
13 as compared with the current I (see[10]). Figure 6
shows the power N' = N°/N°) /5=.9; as a function of
A/6 for generators A and B at loads optimal for each
value of /8, A/6 and w7. Clearly, an increase inthe
length of the insulating gap leads to a considerable
increase in power output in the case of optimal resis-
tances. At equal or unequal loads an increase in the
parameter A/6 in generator B may lead to a different
form of variation of the power and efficiency: the N°
and 1 curves may be increasing or decreasing, but
may also have maxima at certain values of wr. This
is associated with the fact that the parameter A/ does
not have the same effect on the currents I and I at
different values of wr. Figure 7 presents curves for
the currents I and I$ (the current I is shown by a
continuous line, the current I$ by a broken line) as
a function of A/6 at 1/6 =1 and r§ =1, r% =5 for two
values of wT: the numeral 1 corresponds to the case
wT =1, the numeral 2 to be case wt = 5. The curves
shown in Fig. 7 may be explained as follows. Atsmall
wr the effect of the electric forces causing a current
to flow in the direction of the smaller resistance is
greater than the influence of the Hall emf; therefore
the current I3 is greater than the current I3. With in~
crease in the length of the insulator A/6 the overflow
processes are weakened, as a result of which the cur-
rent I decreases, while the current I$ increases. When
wT =5 the influence of the Hall emf predominates,
which leads to an increase in the current I3 and a de-
crease in the current Ij—here I3 > Ij. With increase
in A/8 from zero to a value ~0.05 there is a decrease
in the current flow associated with reverse currents
flowing from the electrodes at higher potentials to the
electrodes at lower potentials (see current flow dia-
gram in [8]), which causes a decrease in the current
IS and an increase in the current I3. WhenA/dincreases
to a value of ~0.5, current begins to leak into the
zone out side the electrodes, and both currents increase.
With further increase in A/6 the leakage effect becomes
much weaker and makes practically no contribution
to the currents. The fact that at large A/6 the current
I3 does not approach the horizontal asymptote indicates
the appearance of effects associated with the action of
A/6 on the Hall emf.

Let us enumerate these effects: 1) the Hall emf
inecreases with increase in A/6 in the same way as the
ordinary emf of a MHD generator increases with in-
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crease in duct height; 2) there is an increase in the
resistance to overflow of current from one pair of
electrodes to the other, as a result of which the cur-
rent I3 may decrease; 3) since the current I3 flows
along a flatter diagonal as A/ increases, its projection
on the y axis decreases; E* ~ jy not only in the space
of each pair of electrodes but also in the space outside
the electrodes; therefore E* decreases with increase
in A/6. Since (see (3.1))

I,° =1,°+ I;° =~ const,

while the current I} increases, I3 decreases, i.e., the
net result of the above-mentioned effects is a decrease
in the Hall emf as A/d increases.

Calculations made at equal loads for scheme A, in
which I3 = 0, showed that with increase in A/é the
longitudinal growth of potential increases; consequently,
in scheme A an increase in A/6 leads to an increase
in the Hall emf.

The results of calculations of the characteristics of MHD generators
of type A for cases when scheme A operates as two independent pairs
of electrodes,” were compared with the results obtained on the basis
of the asymptotic formula proposed in [3] for large wr. The results
of calculations on the M-20 coincided correct to 1% with the calcula-
tions based on the asymptotic formula at wr = 10; at wr = 5 the
asymptotic formula gives an error of ~8%, With further decrease in
wr the error becomes even greater.

In conclusion, the author thanks A. B. Vatazhin
and A. N. Kraiko for their helpful advice.
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